Table 1. Fractional atomic coordinates and equivalent Table 2. Interatomic distances (Å) and angles (°) with isotropic thermal parameters ($\times 10^4$) of the non-H atoms

	$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$						
	x	v	z	$U_{\rm eo}({\rm \AA}^2)$			
O(1)	1791 (5)	4447 (1)	3583 (2)	355 (7)			
C(2)	1888 (8)	4525 (2)	1998 (3)	380 (9)			
C(3)	3236 (8)	4013 (1)	1131 (3)	333 (9)			
Č(4)	4674 (7)	3351 (1)	1853 (3)	311 (9)			
C(5)	4468 (7)	3296 (1)	3518 (3)	306 (9)			
C(6)	3062 (7)	3833 (1)	4310 (3)	299 (9)			
O (7)	5921 (6)	2886 (1)	1016 (2)	451 (8)			
O(8)	3310 (7)	4118 (1)	-432 (2)	502 (9)			
C(9)	2628 (9)	3867 (2)	6041 (3)	353 (11)			
O(10)	4499 (6)	3324 (1)	6940 (2)	387 (8)			

formed using an M4030-1 computer, Slovak Technical University, Bratislava, Czechoslovakia, with SHELX76 (Sheldrick, 1976). Structure and atomic numbering shown in Fig. 1* (drawn by use of ORTEP: Johnson, 1965). Projection of crystal structure in Fig. 2 (Pavelčík, Kettmann & Majer, 1985). Fractional atomic coordinates for non-H atoms are in Table 1; bond distances and angles are in Table 2.

Related literature. Kojic acid was prepared by transformation of saccharides with cultivated Aspergillus tamaril strain (Uher, 1987). Kojic acid can be isolated by thickening of the ultrafiltered medium,

* Lists of structure factors, anisotropic thermal parameters, H-atom parameters, bond lengths and angles and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53194 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

e.s.d.'s in parentheses

O(1)—C(2)	1·360 (1)	C(4)—O(7)	1·244 (1)
O(1)—C(6)	1·352 (1)	C(5)—C(4)	1·431 (2)
C(3)—C(2)	1·337 (2)	C(5)—C(6)	1·343 (2)
C(3)—O(8)	1·346 (2)	C(9)—C(6)	1·502 (2)
C(4)—C(3)	1·444 (2)	C(9)—O(10)	1·406 (2)
$\begin{array}{c} C(6) - O(6) - C(2) \\ O(1) - C(2) - C(3) \\ C(2) - C(3) - C(4) \\ C(4) - C(3) - O(8) \\ O(8) - C(3) - C(2) \\ C(3) - C(4) - C(5) \\ C(5) - C(4) - O(7) \end{array}$	119·4 (1) 121·9 (1) 120·8 (1) 119·4 (1) 119·7 (1) 114·8 (1) 125·9 (1)	$\begin{array}{c} O(7) - C(4) - C(3) \\ C(4) - C(5) - C(6) \\ O(1) - C(6) - C(9) \\ C(9) - C(6) - C(5) \\ C(5) - C(6) - O(1) \\ C(6) - C(9) - O(10) \end{array}$	119·4 (1) 121·0 (1) 109·8 (1) 128·2 (1) 122·1 (1) 113·1 (1)

followed by crystallization from methanol, acetone or ethyl acetate.

References

- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- PAVELČÍK, F. (1987). XP21. Computer program for Syntex P21 data reduction. Dept. of Analytical Chemistry, Faculty of Pharmacy, J. A. Komensky Univ., 832 32 Bratislava, Czechoslovakia.
- PAVELČÍK, F., KETTMANN, V. & MAJER, J. (1985). Chem. Pap. 39, 467-472.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
- SIVÝ, P., SIVÝ, J. & KOREŇ, B. (1987). UB. Automatic Procedure for Unambiguous Choice of Lattice Parameters and Bravais Translation Lattice. Dept. of Physics, Faculty of Chemical Technology, Slovak Technical Univ., Radlinskeho 9, 812 37 Bratislava, Czechoslovakia.
- UHER, M. (1987). Czechoslovakia Patent No. 252880.

Acta Cryst. (1991). C47, 194-196

Structure of a Phosphinohydrazone

BY HERMAN L. AMMON

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

KARIMAT EL-SAYED

Physics Department, Ain Shams University, Cairo, Egypt

AND F. A. FOULI

Chemistry Department, Ain Shams University, Cairo, Egypt

(Received 19 April 1990; accepted 31 May 1990)

1.37 g cm⁻³, λ (Cu K α) = 1.5418 Å (graphite mono-chromator), μ = 23.3 cm⁻¹, F(000) = 1008, T = Abstract. $C_{27}H_{20}ClN_2O_3P$, $M_r = 486.9$, orthorhombic, $P2_12_12_1$, a = 5.3832 (4), b = 15.884 (2), c =293 K, final R = 0.042 for 1911 reflections with I > $V = 2366 (1) \text{ Å}^3$, 27.67 (1) Å, Z = 4, $D_r =$

0108-2701/91/010194-03\$03.00

© 1991 International Union of Crystallography

 Table 1. Atomic coordinates, equivalent isotropic

 temperature factors and e.s.d.'s in parentheses

Table 2. Bond lengths (Å), angles (°) and e.s.d.'s in parentheses

	$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_j \cdot \mathbf{a}_j .$					
	x	у	Z	$B_{eq}(\text{\AA}^2)$	Р- Р-	
Cl	0.4065 (3)	- 0.00163 (9)	0.46510 (5)	6.80 (8)	P-	
P	0.2645(3)	0.03232(8)	0.13735 (5)	3.85 (6)	P-	
01	0.5218(6)	0.0601(2)	0.1433(1)	4.4 (2)	0	
07	0.2287 (6)	-0.0655 (2)	0.1293 (1)	4.7 (2)	08	
O 8	0.1191 (7)	0.0678 (2)	0.0923 (1)	4.1 (2)	N	
N15	0.083 (1)	0.0559 (3)	0.1828 (2)	4.1 (2)	N	
N16	0.1755 (7)	0.0399 (2)	0.2283(1)	3.7 (2)	C	
CI	0.369 (1)	-0.1186 (3)	0.0997 (2)	4.0 (3)	C	
C2	0.575(1)	-0.0938 (4)	0.0738 (2)	5.1 (3)	C	
C3	0.702 (1)	-0.1529 (4)	0.0461 (2)	5.8 (4)	C:	
C4	0.628 (1)	- 0.2350 (4)	0.0458 (2)	5.9 (4)	C4	
C5	0.420 (2)	-0.2590 (4)	0.0715 (2)	5.8 (4)	C:	
C6	0.291 (1)	-0.2014 (3)	0.0982 (2)	4.6 (3)	C	
C9	0.117(1)	0.1549 (3)	0.0826 (2)	3.7 (2)	C	
C10	0.302(1)	0.1895 (4)	0.0557 (2)	4.6 (3)	C	
CII	0.295 (1)	0.2747 (4)	0.0449 (2)	5.1 (3)	C	
C12	0.101 (1)	0.3236 (3)	0.0609 (2)	4.9 (3)	0	
C13	- 0.089 (1)	0.2876 (4)	0.0870 (2)	5.3 (3)	0	
C14	-0.081 (1)	0.2029 (4)	0.0980 (2)	4.5 (3)	0	
C17	0.055 (1)	0.0720 (3)	0.2640 (2)	3.6 (2)	0	
C18	0.141 (1)	0.0532 (3)	0.3133 (2)	3.8 (3)	0	
C19	0.349(1)	0.0037 (4)	0.3218 (2)	4.8 (3)	0	
C20	0.432 (1)	- 0.0138 (3)	0.3680 (2)	5.0 (3)	0	
C21	0.306 (1)	0.0201 (3)	0.4066 (2)	4.4 (3)	C	
C22	0.101 (1)	0.0690 (3)	0-4005 (2)	5.6 (3)		
C23	0.021 (1)	0.0860 (3)	0.3535 (2)	4.8 (3)	N	
C24	-0.163 (1)	0.1247 (3)	0.2580 (2)	4.0 (3)	C	
C25	- 0.329 (1)	0.1735 (3)	0.2533 (2)	4.2 (3)	C.	
C26	-0.525(1)	0.2342 (3)	0.2492 (2)	3.8 (2)		
C27	-0.617(1)	0.2708 (4)	0.2902 (2)	6.1 (4)	c	
C28	-0.802(1)	0.3300 (4)	0.2879 (3)	6.9 (4)	C C	
C29	- 0.897 (1)	0.3517 (4)	0.2443 (3)	6.4 (4)	C.	
C30	-0.811 (1)	0.3158 (4)	0.2043 (2)	6.1 (4)		
C31	- 0.621 (1)	0.2579 (4)	0.2057 (2)	5.3 (3)	C C	

--C21 1.740 (5) C12--C13 1.377 (8) C13-C14 C17-C24 -01 1.463 (3) 1.381 (7) 1.575 (3) 1.453 (6) -08 -07 1.581 (3) C17-C18 1.468 (6) -N15 1.636 (5) C18-C23 1.389 (7) 7-CI C18-C19 1.390 (7) 1.397 (5) 8---C9 1.409 (5) C19--C20 1.380 (7) 115—N16 1.377 (6) C20-C21 1.374(7)16--C17 1.286 (5) C21-C22 1.360(7)1.397 (8) 1.379 (7) C22--C23 I-C2 C24-C25 1.192 (6) --C6 1.379 (6) 2--C3 1.392 (7) C25-C26 1.433 (7) 3---C4 1.365 (8) C26-C31 1.364 (7) 4—C5 1.378 (9) C26-C27 1.365 (7) 5--C6 1.365 (8) C27-C28 1.372 (9) C28--C29 9---C10 1.361 (7) 1.354(9)C29--C30 1.328 (8) 9--C14 1.379 (7) 1.386 (7) C30-C31 1.376 (8) 10-C11 1---C12 1.375 (8) 116.8 (2) C9-C14-C13 119.5 (6) 1-P-08 1-P-07 115.3 (2) N16---C17---C24 N16---C17---C18 123.2 (4) 1-P-N15 118.4 (5) $114 \cdot 1(3)$ 118.4 (5) 100.3 (2) C24-C17-C18 8-P-07 8-P-N15 103.3 (2) C23--C18--C19 116.8 (6) 7—P—N15 105-1 (2) C23-C18-C17 121.5 (5) -07-P 127.7 (3) C19-C18-C17 121.7 (5) 9-08-P 120.4 (3) C20-C19-C18 $122 \cdot 1$ (6) 116—N15—P 116.5 (4) C21--C20--C19 118.9 (6) 17-N16-N15 C22-C21-C20 116.6 (4) 121.6 (6) C22--C21--C1 118.7 (5) 120.1 (5) C20-C21-C1 2-C1-07 124.5 (5) 119.6 (4) C21-C22-C23 -C1--07 115.4 (5) 118-6 (6) C18--C23--C22 C25--C24--C17 119.3 (6) 121.9 (6) -C2-C3 $-C_{3}-C_{2}$ 120.2 (7) 174.6(5)C24-C25-C26 177.5 (6) 120.0 (7) 6-C5-C4 120.3 (6) C31--C26--C27 118.6 (6) 120.1 (6) C31-C26-C25 -C6-C1 122.1 (5) C27--C26--C25 C26--C27--C28 C10-C9-C14 120.9 (5) 119.2 (6) C10-C9-08 119.7 (5) 121.0(7)C29-C28-C27 119.4 (7) C14-C9-08 119.3 (5) C30-C29-C28 C29-C30-C31 120.0 (6) C9-C10-C11 119.5 (6) C12-C11-C10 120.2 (7) 121.6 (6) C11-C12-C13 119.9 (6) C26-C31-C30 119.3 (6) C12-C13-C14 119.9 (6)

 $3\sigma(I)$. The structure provides the first crystallographic data for a molecule containing the $(R - O)_2 P(=O)N$ unit.

Experimental. Yellowish crystals of 3-phenyl-1-(4chlorophenyl)-2-propyn-1-one diphenylphosphinohydrazone from ethanol: $0.1 \times 0.2 \times 0.4$ mm specimen for X-ray measurements; Picker FACS-I diffractometer; cell parameters from 9 reflections centered manually at $\pm 2\theta$ in the range $25.7 < 2\theta <$ 42.6°; intensity data measured with $2\theta - \theta$ scan; 2θ scan speed of 2° min⁻¹; 2θ scan range of (1.6 + $(0.29 \tan \theta)^{\circ}$; 20 s background measurements made at the ends of the scans; 4 standard reflections measured at 200 reflection intervals; 2393 data (includes 104 standards and systematically absent data) measured from $\theta = 2 - 126^{\circ}$; index range for h, k, l of 0-6, 0-17, 0-31; 2188 unique data without systematically absent data; 1911 reflections with $I > 3\sigma(I)$; average change in standard intensities of 0.1% with range of -1.0 to +1.9%; absorption ignored; structure solved with the SAYTAN-MULTAN87 (Debaerdemaeker, Germain, Main, Tate & Woolfson, 1987) direct-methods procedures; refinement by full-matrix least squares with anisotropic temperature factors for C, N and O and isotropic terms for $\sum [1/\sigma(F_o)]^2 (F_o - F_c)^2$ minimized; secondary **H**: extinction (Zachariasen, 1968) refined; final R, wR

Fig. 1. ORTEP drawing of (IV). The C, N and O atoms are displayed as 50% ellipsoids and the H atoms as $B = 1.5 \text{ Å}^2$ spheres.

and goodness-of-fit = 0.042, 0.031, 1.82; maximum $\Delta/\sigma = 0.51$; maximum and minimum values in final difference map of 0.23 and $-0.23 \text{ e} \text{ Å}^{-3}$. The preliminary crystallographic calculations were performed on a UNISYS 1100/92 computer with the XRAY76 system (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976); final calculations were carried out with the TEXSAN program system (TEXSAN, 1989) on a Digital Equipment Corp. MicroVAX II computer. Atomic coordinates and isotropic temperature factors are listed in Table 1; bond lengths and angles are given in Table 2.* An ORTEP drawing (Johnson, 1965) is shown in Fig. 1; the PLOTMD program (Luo, Ammon & Gilliland, 1989) was used to label the drawing and prepare a file which was printed on a Hewlett-Packard Laseriet II printer.

Related literature. Phosphino-hydrazine (II) could react with acetylenic ketone (I) via a Michael addition to yield enone (III) or to form hydrazone (IV) (El-Sayed, Refatt, Ammon, Vlassi, Fouli & Heiba, 1988). This determination has confirmed the product as hydrazone (IV). A search of the Cambridge Structural Database current to December 1989 revealed no other examples of a molecule containing the $(R-O)_2P(=O)N-$ moiety.

References

- DEBAERDEMAEKER, T., GERMAIN, G., MAIN, P., TATE, C. & WOOLFSON, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- EL-SAYED, K., REFATT, L. S., AMMON, H. L., VLASSI, M., FOULI, M. A. & HEIBA, Z. K. (1988). Z. Kristallogr. 185, 207.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA.
- Luo, J., AMMON, H. L. & GILLILAND, G. J. (1989). J. Appl. Cryst. 22, 186.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 System. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland 20742, USA.
- TEXSAN (1989). TEXRAY structure analysis system, version 5.0. Molecular Structure Corp., 3200A Research Forest Drive, The Woodlands, Texas 77381, USA.

ZACHARIASEN, W. H. (1968). Acta Cryst. A39, 158-166,

Acta Cryst. (1991). C47, 196–198

Structures of 8-Chloro-1,2,3,4-tetrahydrocinnolin-4-one and its 2-Chloroacetyl Derivative

BY MAREK L. GŁÓWKA AND IWONA IWANICKA

Institute of General Chemistry, Technical University of Łódź, Zwirki 36, 90-924 Łódź, Poland

(Received 15 December 1989; accepted 23 May 1990)

Abstract. (1) $C_8H_7ClN_2O$, m.p. 397–398 K, $M_r = 182.6$, orthorhombic, Pbca, a = 4.873 (1), b = 13.438 (2), c = 25.526 (3) Å, V = 1671.5 Å³, Z = 8, $D_x = 1.451$ Mg m⁻³, $\lambda(Cu K\alpha) = 1.54178$ Å, $\mu = 3.7$ mm⁻¹, F(000) = 752, T = 293 K, final R = 0.045 for 1479 observed reflections. (2) $C_{10}H_8Cl_2-N_2O_2.{}^{1}_{2}H_2O$, $M_r = 268.1$, orthorhombic, Pbcn, a = 18.740 (3), b = 8.839 (2), c = 14.124 (2) Å, V = 2339.5 Å³, Z = 8, $D_x = 1.522$ Mg m⁻³, $\lambda(Cu K\alpha) =$

1.54178 Å, $\mu = 5.05 \text{ mm}^{-1}$, F(000) = 1096, T = 293 K, final R = 0.051 for 1941 observed reflections. The structures were solved by direct methods. Enhanced conjugation of N(1) lone-pair electrons with the benzene π system in (1) is evidenced by shortening of the C(benzene)—N(1) bond to 1.370 (2) compared with 1.400 (3) Å in (2). The hybridization state of the N(2) atom in (2) is sp^2 [the sum of appropriate bond angles at N(2) is $359 \cdot 2^\circ$]

0108-2701/91/010196-03\$03.00

© 1991 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53202 (19 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.